F(x)=-4x^2-24x+15

Simple and best practice solution for F(x)=-4x^2-24x+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-4x^2-24x+15 equation:



(F)=-4F^2-24F+15
We move all terms to the left:
(F)-(-4F^2-24F+15)=0
We get rid of parentheses
4F^2+24F+F-15=0
We add all the numbers together, and all the variables
4F^2+25F-15=0
a = 4; b = 25; c = -15;
Δ = b2-4ac
Δ = 252-4·4·(-15)
Δ = 865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{865}}{2*4}=\frac{-25-\sqrt{865}}{8} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{865}}{2*4}=\frac{-25+\sqrt{865}}{8} $

See similar equations:

| 6x-(3x-2)=12 | | 3y+10=24 | | 3x+15+(11x-5)=47÷2 | | z-15=2z | | 3x+2x+x=180+20 | | x/6+15=57 | | x+85+x-10=180 | | 23^2+a^2=29^2 | | 23x+30=180 | | 2(q-4)=3(q+2) | | -9(-6x+1)=9(15x-10) | | y-33=47 | | 16=(2e/25) | | 7x+7+4x+14+12x+9=180 | | 4x+3(5x-7)=47 | | 234=99-w | | 2c+3(5c-7=47 | | X+3x+6x-16=180 | | P(t)=3^4 | | P(t)=3^t | | 11r+12-7r+5+4r-12+7+5r=33-2r | | y-1-4y=-4-3y+3 | | 6y+4)=(3y+37) | | 3/2x+4=2x-1 | | -2x+8=2x-20 | | 6x-5x-210=1 | | 6x-5=5x=+1 | | 7+9x=5+2 | | 1/3+1/5x=x/5 | | Y=43-x | | 4-3x=53 | | X+2/3x+2/3x=233 |

Equations solver categories